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ABSTRACT

This thesis is devoted to analyzing the problem of masking a reflected radar signal,
in order to degrade the radar receiver's performance. This is to be accomplished by ap-

propriately choosing the Power Spectral Density (PSD) of'a power constrained colored

noise interference to be generated either by the target itself or by pre-positioned
"friendly" noise makers. The goal in either case is to generate interference signals that

result in decreased receiver probability of detection, PD, for a given receiver probability

of false alarm, PF. Efforts to identify appropriate PSD's of the power constrained in-

terference were carried out by evaluating the receivers' PD as a function of P, for two

specific target models. The performance results for the various receivers investigated

demonstrate that the noise interference generated by the noise makers can achieve sig-

nificant levels of degradation, while the target generated noise interference tends to im-

prove rather than degrade the radar receiver's performance. In all cases considered, the

sinc squared shaped noise interference PSD is more effective at degrading the receiver

performance than any other kind of PSD analyzed.
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I. INTRODUCTION.

Two of the interesting practical problems dealing with the degradation of radar re-
ceivers used for detecting targets in the presence of additive noise interference are in-
vestigated in this thesis and described below in greater detail.

The first problem is pictorially described in Figure 1 on page 2. A target, recog-
nizing that it is being illuminated by a radar, generates and transmits a colored noise
interference signal. which is received in conjuction with the radar echo and the back-
ground noise as well as the thermal noise interference by the radar receiver. Henceforth

this problem will be referred to as "Problem 1". This would be done in order to help the
target hide its presence by effectively degrading the receiver performance. namely by
decreasing the receiver's probability of detection (PD). The target clearly cannot produce
a noise interference with unbounded total power. Thus, the choice of noise interference

that minimizes the radar receiver's PD .subject to a total interference power constraint.
is an important practical problem.

The second problem is pictorially shown in Figure 2 on page 3. Assuming that the
area where the target is likely to be detected by a radar has been penetrated by near
stationary "Friendly" noise makers just prior to the target entering the zone of radar de-
tection. the basic question becomes, what interference produced by the friendly noise

makers will most effectively mininize the receiver's PD, subject again to a total power
constraint. Therefore. on the basis that the friendly noise makers do not have the ability
to produce noise interference with unbounded total power, the choice of noise interfer-
ence subjcct to a total power constraint that maximally degrades the radar receiver's
perfbrmance in order to mask the presence of the target is a practical problem. Hlence-
Forth, the problem described above and shown in Figure 2 on page 3 will be referred to

as "Problem 2".
It is clear that it would be dillicult for the target or the noise makers to decide about

the kind of noise interference that must be generated in order to best mask the target
without an' prior knowledge of the type of receiver that is being used for radar de-
tection. In any case, it must be assumed that the receiver has been optimized for its

target detection function under the assumption of no masking signal present. While not
completely realistic, it is also of interest to analyze these two problems under the as-
sumption of complete knowledge on the part of the radar receiver about the masking
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Figure 2. Noise Makers Transmit Noise Interference.
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(interference) signal being produced. The results would then yield a minimum level of

effectiveness that can be expected to be gained by using masking (interference) tech-

niques. The case in which knowledge exists about the type of receiver implemented is

the only one considered in this thesis. Yet the results have demonstrated that there are

situations when the target-produced noise interference (i.e., problem 1), instead of hiding

its presence by degrading the receiver performance (i.e., reducing PD), actually improves

it. The transmission of the noise interference by the target itself is not effective, and can

be rather harmful in essentially all the cases investigated. In constrast, the transmission

of noise interference by noise makers, in all cases analyzed. proved to be effective and

to cause significant receiver performance degradation.

The analysis and results associated with investigation of the above described prob-

lems are presented in the five subsequent chapters.

In Chapter 2, the basic information that already exists in the literature pertaining

to the problem under discussion here is presented, along with a mathematical description

of the problem to be considered in chapters 3 and 4.

In Chapter 3, a simple target model, which from now on will be referred to as

"Target Model A", is used to investigate the effect of various kinds of noise interference

generated by the target (i.e., Problem 1). For this particular target model, the situation

in which noise makers generate interference (i.e.. Problem 2) has been investigated by

Bukofzer [Ref. 1], so that pertinent results are presented in this chapter for completeness

sake. However. the case where the noise is transmitted by the target when realizing that

it has been illuminated by a radar (corresponding to Problem I described above) is in-

vestigated in detail. The performance of the receiver, which is optimum under conditions

to be stated in the sequel, is obtained and presented in terms of the Receiver Operating

Characteristics (ROC's).

Chapter 4 is devoted to analyzing the basic problems previously described, assuming

a more sophisticated target model is applicable. The so-called Slowly Fluctuating Point

Target model, where the reflected radar signal is modeled as a complex Gaussian random

process whose envelope is a Rayleigh random variable, which henceforth will be referred

to as "Target Model B", is utilized to investigate two specific cases. The first such case

involves a receiver designed to be optimum for detecting targets observed in the presence

of Additive White Gaussian Noise (AWGN) interference. The performance of this re-

ceiver, operating under the scenarios shown in Figure 1 on page 2 and Figure 2 on page

3, is investigated and evaluated in terms of the ROC's under various interference condi-

tions generated either by the target itself, or the prepositioned noise makers. The second

4



case considered assumes that the receiver has prior knowledge of the kind of noise in-

terference produced by the target or noise makers and therefbre is designed to operate

optimally in the presence of such noise interference. For such a receiver its performance

under the scenarios shown in Figure 1 on page 2 and Figure 2 on page 3 is investigated

and results are presented in terms of the ROC's.

In Chapter 5, based on the results presented as mathematical expressions of 1P1, as

a function of PF in Chapters 3 and 4, the performance of the receiver analyzed in each

case is evaluated using numerical methods and various signal and noise power parame-

ters. The effect of the masking signal on the receiver's detection probability PD is dis-

played for representative values of the Signal-to-Noise Ratio and the Jamming-to-Signal

Ratio.

A summary of the results obtained and the conclusions that can be drawn from

these are presented in Chapter 6. Additionally somc of tlic mathcmatical manipulations

that are necessary to the derivation of certain results arc preented in the appendices.

A descriptive summary of the problems investigated and described abovc. is shown

in Table I below where ACGN and PSD stand for additive colored Gaussian noise and

power spectral density, respectively.

Table 1. SUMMARY OF PROBLEMS INVESTIGATED

TA RGI I lO)I!.S
A'___ B

I. Correlator Receiver Optimum for AWON Inter-
ference

Quadrature II. Correlator Receiver Optimum for ACGN Inter-
#1 Correlator ference

(Analyzed) a.Bandlimited Constant Amplitude PSI)
(nlzdb.Sinc Squared Shaped PSI)

o c. II utterwVorth Shaped PSI)
... ____ d.'riantlar Shaped PSI)

0 L. Correlator Receiver Optimum for AWGN Inter-
ference

Optimum specrum

Analyzed in II. Correlator Receiver Optimum for ACGN Inter-
#2 fercncea.Bandlinited Constant Amplitude PSI)

b.Sinc Squared Shaped PSl)
c.Butterworth Shaped PSI)
d,'iriangular Shaped PSI)

. ... ....... ......... . . . mu~m~ mn mnuumu un



II. MATHEMATICAL PRELIMINARIES

A. GENERAL

A conventional pulsed radar transmits a signal which consists of a sequence of
pulses. If a target is present, part of the transmitted signal is reflected. Depending on
the type of target model assumed, some of the characteristics, such as amplitude, fre-
quency, or phase of the reflected signal will change with respect to those of the trans-

mitted signal.

The basic radar detection problem involves examining the reflected signal in the
presence of noise and other forms of interference, and deciding whether or not a target

is present . The source of uncertainty inherent in the problem, stems from the fact that
the radar receiver does not know a-priori whether or not a target is present. and from
the fact that depending on the type of target present, reflected signal parameters such
as amplitude, phase, and frequency, may not be known to the receiver either. The sim-

plest possible radar detection problem involves a target modeled as producing a com-
pletely known signal return, received in the presence of additive white Gaussian noise

(AWN'GN) interference.

B. TARGET MODEL A.

The first simple target model treats the reflected signal as a sinusoid of known am-
plitude and frequency, but having a random phase. This radar detection problem has

been addressed extensively in the literature under various assumptions of additive noise

interference.

1. Additive White Gaussian Noise (AWGN) Under Both Hypotheses.
Van Trees (Ref. 31 provides an extensive intoduction to the principles of radar

detection, treated as a hypothesis testing problem. Defining HI as the hypothesis that
the target is present and H0 as the hypothesis that the target is absent, the above de-

scribed problem is mathematically expressed as

r(t) =.v'Eri) cos[wet + 0(t) + 0] + w(t) 0 < t < T
H0 : r(t) = w(t)

6



where Er is the actual received signal energy, 0 is a random variable (r.v.) uniformly

distributed over [0, 27r], and w(t) is a sample function of a zero mean white Gaussian

noise process with power spectral density (PSD) S(o) = No/2 . The amplitude and

phase modulations, Ait) and 0(t), respectively, are deterministic and fit) is assumed to

satisfy

foT 2(t) = -- (2.2)

It is demonstrated in Van Trees [ Ref 3] that decisions about two hypotheses

are optimally given by the threshold test

H,

L < y (2.3)
Ho

where

L C L2  (2.4)

and

Lc = f,'2 r(t),flt) cos[wct + 0(t)] dt (2.5)

Ls = f:,2 r(t)fit) sin[o),t + 0(i)] dt (2.6)

The threshold of the test, denoted by y in Equation 2.3, is normally set by specifying an

operating value for PF, the probability of false alarm.

There are two kinds of errors which can be made. If the receiver decides a signal

(i.e., target) is present when in fact it is not, an error of thefirst kind is made. That is,

we choose H, when H0 is actually true. Denote this probability P(DI/Ho ), which in

the radar terminology corresponds to PF, the probability of false alarm , and it is

mathematically expressed as

PF = P(DI/Ho) = Jf 1 1 1Ho(L/Ho) dL (2.7)
Y



where fIIH O(L/H) is the probability density function of the r.v. L, conditioned on the

hypothesis that H0 is true.

On the other hand, if Ho is chosen when H is actually true, an error of the

second kind is made. The probability of an error of second kind denoted as P(Do/HI),

in the radar terminology is called the probability of a miss , and is mathematically ex-

pressed as

PM = P(DoIH1 ) - f__/H 1 (LIHI) dL (2.8)
D0

Often PD is used, which is the probability of choosing H1 when H, is actu-

ally true. This corresponds to 1 - P(Do/H 1) , and in the radar terminology is called the

probability of detection . Mathematically it is expressed as

PD = P(DI/H1 ) f OfliH(L/Hl) (2.9)

V

The realization of the optimum receiver for the hypothesis testing problem

discused above is shown in Figure 3 on page 9, and it is known as a quadrature

correlator receiver.

The performance of this receiver, in terms of PD and PF is given by

PF = exp( - Y )

S-2E,. T- (2.10)
PD Q Vn

where y and E, have been defined above. and

00 2 2QO-, ) = exp - z+ a.
Q(, fl) =fz exp( - 2 ) Io(az) dz (2.I1)

is the so-called Marcum's Q function. The 10(x) function is defined by

• m I m | 8
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Figure 3. Optimum Quadrature Correlator Receiver.
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10(X) = i-Jexp[x cos(t - eo]t(2.12)

and it is known as the modified Bessel function of zero order.

Observe that PD can be written in terms of PF as

PD Q(-F,,~r , 2lIn- ) (2.13)

so that PD can be plotted as a function of PF for different values of Er/,No. Such a piot

results in the so called Receiver Operating Characteristics (ROC's).

2. Additive Colored Gaussian Noise (ACGN) Under Both Hypotheses.

The performance of the optimum receiver shown in Figure 3 on page 9, which

has been designed for the signal and noise model of Equation 2.1, can be evaluated when

an additional source of interference is present, namely additive colored Gaussian noise

(ACGN). that is statistically independent of the AWGN w(t. It is obvious that this

receiver is no longer optimum for the assumed signal and noise model. Bukofzer [ Ref.

21 has investigated this problem which can be mathematically expressed as the hypoth-

esis testing problem

H, r(t) = <,2Erflt) cos[coot + 0(i) + 0] + n(t) + w(t) 0 < tr T

H -r(t) = n(t) + w(t) (2.14)

where again Er is the actual received signal energy, 0 is a random variable (r.v.) uni-

formly distributed over [0. 2-] and n,(t) and w(t) are zero mean indep.Iident Gaussian

random processes with PSD S ,(co) (as yet unspecified) and S,,(co) = X0/2, respectively.

The performance of the receiver shown in Figure 3 on page 9, under the above

stated hypotheses and the assumption that 0(t)= 0, is given as

PF = exp - 22

10



where, using the notation Var{./.) to denote the conditioned variance of a r.v,,

a = Var{Ls/H 1 , O} = Var{Le/HI , 9)
= Var{Ls/Ho} = Var{LIHo} (2.16)

'o 2
-- 2 + one

with

2 _ 1 I S F(co I dw(
S(2.17)

Also Fjw) is the Fourier Transform of f,(t) , where

f'(t) - fit) cos wet (2.1S)

A direct relationship between PD and PF can be obtained, namely

0(1 Er, 2 ln- (2.19)
PD =Q -V2 n 2PF (.9

+ nc

C. TARGET MODEL B.

Van Trees [Ref. 1] derives analytically the target model for this particular case, with

the assumption that the radar transmits a continuous cosine wave

", 2Pt cos O~ 2 ,Re{ ,.P expjwct)} - co < t < o (2.20)

Assuming that there is a zero-velocity target at some range R from the transmitter,

whose physical structure consists of several reflecting surfaces, then the reflected signal

can be written as

K

sr(t) = 2Re .PtZ gi exp'°c,(t - r) + Oij (2.21)

where g represents the attenuation of the signal due to the two-way path loss, the radar

cross section of the i-th reflecting surface while also including the effects of transmitting

11



and receiving antenna gains, 01 is a random phase angle introduced by the reflection

process, and r is the signal round trip delay time to and from the target.

Assuming that all 01 are statistically independent, that the g, have equal magni-

tudes and that K is sufficiently large, and then using the central limit theorem, one ob-

tains

sr(t) = ,2Re{I-Pt b expUcwc(t -031 (2.22)

where b is a complex Gaussian random variable. The envelope, b 1, is a Rayleigh ran-

dom variable, whose moments are

E{ I b I 1 ' 41 (2.23)

and

2E{b } = 20b (2.24)

The value of a includes the antenna gains, path losses, and radar cross section of

the target.

The reflection process associated with this target model is assumed to befequencv-

independent and linear. That is, if

SI(,) = T2Re{\PT, exp jwt +j(,t)} (2.25)

is transmitted,

s,(t) = ,i2Re{,PTb expui(co, + C)(, - ,)I} (2.26)

is received, while if

s,(t) / Re{iEf () exp(Jcoet)} (2.27)

is transmitted,

Sr(t) = N/2 Re./Eb exp[J'w(t - )](t- )(2.28)

12



is received. Since b has a uniform phase, the exp(jC0) term, can be absorbed into the

phase, so that

sr(t) = 1/iRe {'-tEj bf (t - ) expUwOIt)} (2.29)

where the function f(r) is the complex envelope of the transmitted signal, which is as-

sumed to be normalized, in the sense that

7)f 1(,d1==1  (2.30)

Thus, from Equation 2.27, the transmitted signal energy is E, and the expected

value of the received signal energy is

E,2Etab (2.31)

Considering now a target with constant radial velocity v , the target range R(i) can

be written as

R(t) = Ro - ot (2.32)

where RO is the target range at t = 0.

Under these conditions and assuming that the transmitted signal is the one given in

Equation 2.27, the reflected signal becomes

Sr(t) = ;2e, 2 L1b(t - Tr + -" ) exp iw~t + )(.3

where c is the velocity of the light. Furthermore, from the assumption

2v T 1(234)
C t

where W is the bandwidth of f(), the reflected radar signal can be mathematically de-

scribed as

'r(1) = <2Re T b f(t - T) 0<,< T (2.35)

where

13



( OD oc c )(2.36)

is the shift in the carrier frequency called Doppler Shift.

Then, the total received waveform, in which additive Gaussian noise is accounted

for, can be written as

r(t) = !'2Re{i-, b f(t- r) exp[jcoct +jCODdt} + j2 Re{(t) expjwoct]} (2.37)

or more compactly

r(t) = ,/2 Re{7 (t) exp[jwoct]} (2.38)

where

= bEEf T - r) expD'ODt] + n(t) (.39)

The total noise interference n(t) can be expressed as

n(t) = ,2 Re{i(t) exp[jcjt]} (2.40)

which represents the actual Gaussian noise that is added to the received signal. Since

the detection problem in this case is limited to a particular value of range and Doppler

shift, the corresponding parameters T and COD without loss of generality can be set to

zero for algebraic simplicity, and the binary hypothesis testing problem can be math-

ematically described as

r(!) = 2Re{b Ef (t) + x(2.41)

H0  r(t) = .2 Ref'(t) exp[jwct]}

so that the detection problem can be explicitely formulated for the two different kinds

of additive Gaussian noise.

1. Additive White Gaussian Noise (AWGN) Under Both Hypotheses.

In this case, the complex envelopes of the received waveform under the two

hypotheses are
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(r t) = f(t) ( t)(2 .4 2 )

HO

where ) is a zero mean white complex Gaussian random process with

w (u)] = No6(t- u) (2.43)

Thus the transmitted signal energy is E, and the expected value of the received

signal energy is

S 2
E= 2Et b  (2.44)

Van Trees [Ref. 21 proves that optimal decisions about the two hypotheses in

Equation 2.42 are given by the threshold test

IN I _-1,2 " .\'o(.\,) + h E; (2.5)
-I, ~1 .V0(No ±e2 {In + Iln(l + \ ) " (2.45)11o abEt  0

where 7, is a suflicient statistic given by

T 

7(tf (t)dt (2.46)

which is implemented by the receiver shown in Figure 4 on page 16 (see point labeled

I ). or equivalently, by the receiver shown in Figure 5 on page 17 (actual receiver). Note

that the test threshold - depends on 77. which itself depends on the prior probabilities of

the two alternative hypotheses and the decision costs.

The performance of these receivers has been evaluated in [ Ref. 2], in terms of

PD and PF and demonstrated to be given by

NOPF= exp(- +)

(2.47)

In terms of ROC's. the performance of the optimum receiver is given by
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(2.49)N0

From Equation 2.48 it is clear that increasing A always improves the perform-

aticc o the receiver in the sense that for fixed PF, PD increases as A increases.

2. Additive Colored Gaussian Noise (ACGN) Under Both Hypotheses.

in this case. the complex envelopes of the received signal under the two hy-

potheses are

r: T,) = , b f(i + i) o<t T
no: 7(j = 77(i) (2.50)

The additive noise 7z(t) is a sample function from a zero mean nonwhite com-

plex Gaussian process. It is assumed here that n(i) contains two statistically inde-

pendent Gaussian components. namely

n () = 11(1)+ w(t) (2.51)

where the covariance of 1-(t) is given by

l'[77(t)77 (u)] I (t.u) = I{ti) + ,N05(t-u) 0 < t , u < T (2.52)

Van Trees [Ref' 2 1 dcrives the optimum threshold test for the hypothesis testing

problem of Equation 2.50. which is given by

f 7 ('), 2 > (2.53)

where gl) is the solution to the integral equation

JA(1) = ( 1) ,d1 + A* g(i) 0 < r, u < T (2.54)[ ql0



f ft) fk(t) g(u)du + A-'(t) 0 < t, u < T (2.54)
0

The optimum receivers for this case are shown in Figure 6 on page 20 (con-

ceptual operation using complex signals) and in Figure 7 on page 21 (actual receiver).

A particularly simple solution to this problem is obtained when ; Jt) can be

modeled as a stationary process and the observation interval is nearly infinite, leading

to the so-called Stationary Process, Long Observation Time, or SPLOT problem. Then

Fourier Transforms can be used to solve Equation 2.54, to yield

; (w - F(co) (2.55)

where -(wj) - $(co) and s c(co) are the Fourier Transforms of f(t). K (t,u) and

(tu) respectively.

The performance of the optimum receiver in terms of ROC's is also given by the

functional form of Equation 2.4S, which in this case can be expressed as

A Eo f(t)g (a)dt (2.56)

For the SPLOT problem, A can be evaluated by using the inverse Fourier

Transform of Equation 2.55 in Equation 2.56, while allowing T--+ 00 for computational

simplicity.
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111. RECEIVER PERFORMANCE ANALYSIS BASED ON THE TARGET

MODEL A.

The binary detection problem addressed in this chapter involves discriminating be-
tween the two alternatives

H, : Signal is present

H0 : Signal is not present
under somewhat more complicated conditions due to uncertainty in the received signal,
expressed by a random phase angle imposed on the signal during the reflection process.

The hypothesis testing problem is mathematically described as

H , : r(t) = 2'Erft) cos[ct + 0() + 0] + n(t) 0 t T (__ T

H0 : r(t) = n(t) (3.1)

where Er is the received signal energy, n(t) is a sample function of a zero mean white
Gaussian, or a combination of a white and colored Gaussian noise process, and 0 is a
random variable (r.v.) uniformly distributed over [0, 27r]. The amplitude and phase

modulations. fli) and 0(r) respectively, are determinist-c, with fit) assumed to satisfy

1 T It)1 2  = 1 (3.2)

The case in which

n(t) = w(t) (3.3)

where w(t) is a white Gaussian random process, has been addressed extensively in the

literature [ Ref. 2 1 and the basic results have been presented earlier in Chapter 2. The
basic performance equation in terms of ROC's, is given by Equation 2.13 and repeated

here for completeness, namely

PD Q E, 2In# (3.4)
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In the case where the additive Gaussian noise is other than white under both hy-

potheses, the receiver shown in Figure 3 on page 9 is no longer optimum and the per-

formance of this receiver will no longer be given by Equation 3.4.

A. PROBLEM 1.

In this case the hypothesis testing problem is mathematicaly described as

H: r(t) = 1,E, -f(t) cos[fco + 4(t) + 0] + n(t) + w(t) 0 < t < T

HO : r(t) = w(t) (3.5)

where Er is the received signal energy, 0 is a random variable (r.v.) uniformly distributed

over [0, 2r], and n,(t) and w(t) are zero mean independent Gaussian random proc-

esses with PSD S,,(w ) (as yet unspecified) and S.(o) = N0/2, respectively. The per-

formance of the receiver shown in Figure 3 on page 9, having input r(t) given by

Equation 3.5 is now evaluated.

The signal at the output of the receiver can be mathematically described as

L = L s (3.6)

where

Le = , 2 r(t)fit) cos[coct + 0(t)] dt (3.7)

Ls = f,/2 r(t)J(t) sin[wet + (P(t)] dt (3.8)

In order for the performance to be evaluated, the probabilities PD and PF must

be specified. To this end, the probability density function (p.d.f.) of the r.v. L at the

output of the receiver, conditioned on both hypotheses, is required. This can be ac-

complished by observing that both L, and Ls are conditionally Gaussian r.v.'s.

Using the notation Ef . I.) to denote conditional expectations, the conditioned

means of the r.v.'s L, and L, can be obtained from
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E(LdIH,O) =

= E{ /2 [fT 2E, fit) cos[wot + 0(t) + 0] + IV([) + nC(t)tt) cos[wot + 0()]dr} (3.9)

=- 4Ercos 0

E(LsIH1 , 0) =

=Elf T2 [,2E,.flt) cos[Oct + 0(t) + 0] + w(t) + nc(t)]/) sin[ct + d(t]d} (3.10)

T-Jr sin 0

Obviously, since both n() and w() are assumed to be zero mean processes,

E{LcIHo} = E{LslHo} = 0 (3.11)

Bukofzer [Ref 21 shows that, under the assumption of 0(t) - 0

Var{LIHI 0)= Var{L/HI , - 2 + anc (3.12)

where a2 is defined as

2 1 I c'

a nJ S (2)7F(w) 2dw (3.13)

and F(o) is the Fourier Transform of the fc(t), where

f'(1) = t) cos oct (3.14)

Under the hypothesis Ho , the conditional variances of L, and L, can be evaluated

as
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Var{Lf Ho) = Var{LsIHo} = E[J2 w(t)flt) cos[coct + (t)] dt]2}

T s(3.15)
S2 T E((t)w())}J~t)J('c) cos[wct + 0(t)] cos[OcOj + O(r)] dt dr- 2°

Bukofzer [Ref. 2] shows that L, and L, are uncorrelated, and since the conditional

r.v.'s are Gaussian, Whalen [Ref. 4 ] shows that the corresponding conditional p.d.f.'s

can be written as

flIH(L/H+) 2a) exp L E2/ErL )u(L)

(O2)(Xo ) . ) (- 'O- °
(H 1 ex( -C L+(3.16)

f, H (LH1 exp 2L u(L)
fz/°(L/H°) - p(o - 0--)

where u( . ) is the unit step function, a2 is defined in Equation 3.13 and 1o(x) is the

modified Bessel function of zero order, defined by Equation 2.12.

As a result of this, we can express the probabilities PD and PF as

PD=Pr{l>,/IItl} = JflIH(L/Hj)dL

x( L + Er 2 E,.L u(L) dL

NO ep - --( + 2 I /-p- + C2

x 2 + 2 ] (3.17)
=x exp X + ot I(ax) dx

Q Of :NO 2
"2 + aYnc

where
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2 - r (3.1S)

.(o/ 2 + C

and Q(c , fl) is the so-called Marcum's Q function.

Furthermore

PF Pr{/> y/Ho} f-fuHo(LHO)dL

I exp -' u(L) dL (3.19)

| '

= exp(- -)0

Solving for y yields

N In (3.20)

0 F

and a direct relationship between PD and PF can be obtained, namely

NO Q/+ 2 NO + 1i) (321

This result specifies the performance of the receiver shown in Figure 3 on page 9,

under the assumptions stated in Equation 3.5. In order for the PD to be evaluated as

a function of PF and the parameters making up Equation 3.21, it is necessary to specify

the type of signal envelope that is transmitted and the colored noise interference PSD

with which to mask the reflected signal.
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1. Signal.

A simple model is chosen to specify the signal envelope, that is

1 070<t< T

,/(t) =(3.22)

0 otherwise

so that the transmitted waveform can be mathematically expressed as

f .----I-T-cos(wcl) 0 t f 3IT - (3.23)

0 otherwise

The Fourier Transform of the transmitted waveform (t) , denoted F(c) , can

be shown to have a magnitude squared given by

sin[( - w0) _ ] T sin2[(v + C,,) , I
Fc)12 7 + 2 (3.24)

2FU( 2 2 [(C - c) ]2 2 2 [( _+ ]2

under the assumption that cocT > I

2. Noise.

Since the noise power affecting the receiver performance (see lquation 3.21)

depends on the PSD of the additive colored Gaussian noise. it is necessary to specify

such ACGN PSD before performance evaluations are possible. Attempts to extrenlize

PD as a function of a2, have not proved succesful. Therelbre. four dillerent PSD's
were chosen for nc(t) on the basis of simplicity and suitability as "usclul" PISD shapes

that could significantly degrade receiver performance. Therefore in Appendix A, the
evaluation of Equation 3.13 for four diflerent ACGN PSD shapes is presented, since as

pointed out, it is apparent that the extremization of PD for fixed PF under a powcr

constraint on n(t), is not possible. Common to all those cases is the fact that the total

power of n,(t) is constrained and set equal to 1' The evaluation of Appendix A yield

the general result

2 1' (3.25)S= k 1"
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a. Bandlimited Constant Amplitude PSD

The bandlimited constant amplitude PSD is mathematically describcd as

4oP IW +ocI '

Sn(Ctl) =(3.26)SCO 0 otherwise (.6

where a is a scalar. Based on the results of Appendix B for a similar case, k was

evaluated for a 1 , which results in the maximum effective noise power, yielding

k = 0.224 (3.27)

b. Sinc Squared Shaped PSD

The PSD in this case can be mathematically described as

. 2 7'Iin [(co + Wd) - ] [(inw - (1) , ] 1
SnC((O) = - [(CO T 2±C I - Co ' on (3.28)

where 6 is a scalar. For (5 = 1, which rcsults in a noise bandwidth equal to the signals

main lobe width, k was evaluated as

k = 0.3333 (3.29)

c. Butterworth Shaped PSD

The PSD in this case can be mathematically described as

Pnc(flwos) + ,, fh,,3)n.CO = 2 2+1o)
( Cow) + (W + w) (Ihi) 2 + (w - )2 -,00 < C < 00 (3.30)

where co, is half power point of the spectrum and fl is a scalar. Based on the results

of Appendix B for a similar case. k was evaluated for , = I. which results in the max-

imum effective noise power, yielding

k = 0.304 (3.31)
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d. Triangular Shaped PSD

In this case the PSD is mathcmatically described as

S 2 w- "' 1 f&c I ( I - U~

Sn(CO) = (3.32)1.. C -1 + I(O CI I('1)Cf tw
2 c 1 E U )-

where t is a scalar. Based on the results of Appendix 11 for a similar case, k was
evaluated for t 1 1, which results in the maximum effective noise power. yielding

k = 0.051 (3.33)

Defining the Signal-to-Noise Ratio to be. (the unitless quantity)

Ir
SNR (3.34)

and the Jamming-to-Signal Ratio to be (the unitless quantity)

JSR (3.35)
E,

the actual performance of the receiver operating under the four types of colored noise

interference described above can now be specified. The results are all of the general Form

~D2 Q( 1 2 ATC

(3.36)

S.YR 2 In P"1-- I + SR .IS ' I + k SNI? JSR

where the value of k is specified by Equations 3.27, 3.29, 3.31 and 3.33 for the four

kinds of ACGN PSD shapes considered.

These results will be analyzed in more detail and presented via ROC's in

Chapter 5.
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IV. RECEIVER PERFORMANCE ANALYSIS BASED ON THE TARGET

MODEL B.

The problem of discriminating between the two alternatives being addressed here,

namely

H1 : Signal is present

H0 : Signal is not present

has been presented in Chapter 2, with the pertinent equations describing this problem

given as Equations 2.50 to Equation 2.54.

Since the final goal is to mask the signal with an optimally shaped colored noise

PSD, prior knowledge of the type of the receiver used for signal detection is very im-

portant. Depending on the type of additive Gaussian noise that is assumed to be pres-

ent, there are two optimum receivers that can be used. The first one is a receiver designed

to be optimum in the presence of additive white Gaussian noise, and which from now

on will be referred to as Receiver I . On the other hand. the receiver can be designed

to be optimum in the presence of additive colored Gaussian noise, which from now on

will be referred to as Receiver II.

A. PERFORMANCE OF RECEIVER I.

For this case, the problem has been presented in Chapter 2, with the pertinent

equations describing the problem given by Equations 2.42 through Equation 2.46.

The performance of the receiver shown in Figure 4 on page 16 and Figure 5 on

page 17, which has been designed for the signal and noise model of Equation 2.42, can

also be evaluated when the additive Gaussian noise process is colored, or a combination

of white and a colored Gaussian noise process. It is obvious that these receivers are no

longer optimum for the assumed signal and noise model. Depending on the colored

noise PSD considered to be present, two cases are investigated below.
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1. Problem 1.
The complex envelopes of the received signal under the two hypotheses are

/I 7(1) . j () + 7, (,) 0 <_ , t r T 4 1
HO 7(t)=.tfr) ()Ho0: (0= (0(4.1l)

where the additive noise i(t) is a sample function from a zero mean nonwhite complex
Gaussian process assumed to contain two statistically independent components, namely

() = C(t) + W(t) (4.2)

The covariance of (t) is again given by

E[Z2()7 (,1)] = K (tlu) = A4(t.u) + ANo6(t-u) 0 tr , u <_ T (4.3)

The receiver whose performance is to be evaluated under such conditions corresponds
to the one shown in Figure 4 on page 16, and in Figure 5 on page 17 while this receiver

is no longer optimum its performance can be evaluated by obtaining the probability

density function of the r.v. at the receiver output conditioned on both hypotheses. The
correlator output is a complex Gaussian r.v. whose probability density function can be

mathematically expressed once the mean and variance of 7 have been determined.

Since

= (t (t di

0

(4.4)

- \Et b + 71, when H1 is true

= wwhen H0 is true

where

= (t) (t)dt (4.5)

31



and

fT

= (' dt (4.6)
'0

Due to the fact that both n,(t) and w(t) are assumed to be zero mean processes

and b is a zero mean Gaussian r.v.,

E{711Ho) = E{7 1IH) = 0 (4.7)

Denoting

Var(l7 t110} 2a02 (4.8)

J'art r11i} 2ali (4.9)

the variances can be evaluated as

2ano E( E. £ f f '(t) w ( -) (t)? (u) dt dul

{ 7 jT =(4.10)

f= f Xo6(,- . 7(,)7(u) di du = NO

Also
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TI

2~ ~ 2 :*

2, = E{1r11 /H1} ---  jiE7" (11 1 (t)dt + fl1(,)

Eb~bI 2 1n112 (4.11)= Eb, b"j + I-1

N + N +

where

2C , j(t ) (4.12)

and using Parseval's Theorem, a2 can be expressed as

0C I (w)duw (4.13)

Since 7 is a complex Gaussian r.v., the p.d.f.'s of 7 conditioned on the two

hypotheses can be written as

S eHx(R1IHI) = exl 2c } (4.14)

f ~1/HJRIIH0) 1  exp 2 (4.15)

where

=Rc +jRs (4.16)
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and Rc and R, are zero mean, equal variance, uncorrelated Gaussian random variables.

Using the transformation

M = R + R2 R 1 (4.17)

the p.d.f.'s can be written as

fmIH," 1( I1) = I exp 2 u(M) (4.18)

fm11 0( P H) = exp - M u(m) (4.19)2Gno 2a 2
no

Then the required probabilities can be expressed as

PF = fmHo(AIHO) dm = 1 - fmIHo(MIHO) din

2 2 (4.20)

exp( -

and furthermore

D = f m 1(IHI) dm
Y

= exp( - Y 2(

A direct relationship between PD and PF can be obtained, namely

2a /2a212 ,

PD = PF) 17' n

No (4.22)

= (PF)( )+ + "C
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In this case the performance of the optimum receiver will be evaluated for four

different kinds of noise interference.

a. Bandlimited Constant Amplitude PSD.

Assuming a single sided bandwidth of w, the colored noise PSD is given by

S-()= "P -w _ w w (4.23)nc C

where Pn is the colored noise power. Then a2 can be evaluated as

2 Lf co J%))d

ow -2 T

c Tr sin (co 2 d (4.24)2 7r PnT (CO-T- d

-w 2

0 0.448 TPnc

Therefore PD can be written as

D= tF +S-R+0.448 S R JSR (4.25)

where

SAVR £ (4.26)
NO

TP c

JSR - c (4.27)
r

b. Sinc Squared Shaped PSD.

In this case the colored noise PSD is mathematicaly described as

sin 2 (CO T)
S- (co) = TP,,2 -T0 < Co < o (4.28)
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Then o can be evaluated as

1 2_dW

1 f sin2 (01 -L )  sin...(

(4.29)
20 (cO _ )2 (CO T )2

= 0.666 TPnC

Therefore PD can be written as

PD = PF 1+SNR+0.666 SNR JSR (4.30)

c. Butterworth Shaped PSD.

In this case the colored noise PSD is mathematicaly described as

S(co) = 2 + -2 < co < oo (4.31)

where a is the half-power point of this spectrum. Then a2 can be evaluated as

2 1foo ,I,.J U0I2doCnc 27r c

T_ sin 2(co

2rt 2Pn -TJ 2 2 T 2 dco (4.32)

a+w (O-L)

= 0.608 TPnC

Therefore PD can be written as
( 1

PD = PF' I+S.VR+0.608 SAT JSR (4.33)
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d. Triangular Shaped PSD.

In this case the colored noise PSD can be mathematically described as

( CO)  = -' '0 I - -o(0 : CO  :!-- C0O (4.34)

where P, is the available colored noise power. Then a2 can be evaluated as

%c 27r c

I2n, 2 ° _ do (4.35)

22

- 0.103 TPnC

Therefore PD can be written as

PD PFI+S.NR+O.103 SNRJSR (4.36)

2. Problem 2.

The problem addressed here is described by the Equation 2.50 in Chapter 2.

Due to the similarities of this case to the problem previously investigated. use

may be made of the development of Equations 4.7 through Equation 4.22. The differ-

ence between the present case and that previously considered is that the variance of the

correlator output is given by
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uT -( (4.37)

C2, + N0V

and

2a I E{lrlI-l}1I= E -L\"E b f(t)f (t) dt +n
L "0

(4.38)

~Er+ A'0 + n

where a is defined in Equation 4. 13. The performance now is obtained as

22
PD = (PF)2 ??0n 1n

(4.39)
= (PF)®

where

A" +a2
E) n 2 (4.40)Er + NO + anc

From Equation 4.39 it is obvious that as E increases, PD always decreases.

Observe furthermore that E) is a monotonically increasing function of C2 as can be seen

from the fact that
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E - + 2 2"
dE) 0, +N+ nc - NO- an,

22 ) 2

d('.) vn + C2, 2  
(4.41)

E- > 0(T' + VO + a~)

This means that as a2 increases, PD always decreases for fixed PF.

Using Equation 4.13 and the Cauchy-Schwarz inequality, we have that

S,Tw (W) j dco -: S(co) A)]2 djF co 2 (4.42)

with equality if and only if

S-() = p( I (4.43)

where p is an arbitrary constant.

Integrating both sides of of Equation 4.43, yields

(,)) d= PC=FP I (Co)12 dw (4.44)

so that

P Cn, (4.45)

and the optimum solution for S- (co), which satisfies both the minimization of PD and

the power constraint of the noise interference, denoted as SO(co) , can be written as
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S-2 P(4.46)nC J__ -) j w 2 dc

This means that the optimum noise interference PSD, depends on the envelope

f() that is transmitted.

Assuming that the complex envelope of the transmitted signal is given by

Equation 3.22 the corresponding Fourier Transform can be written as

F(co) T T exp( -j" -)-f(t)

and

.2T

sin (CO
--w-) = T 2 (4.48)

The optimum noise interference PSD, can be specified as

PnT -2

Sn () = - (4.49)

Since

JT~f)1 2 d f7 I (o = ,1 (4.50)

the optimum noise interference PSD is simply given by

2

Se2 (CO) = Pn T s T)2 (4.51)nc C (COT )2
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so that

2

_00

0o• T si2( T
1smn(c 2-) )l~

..(-L T 2 do (4.52)

0.666 TPnc

Therefore the performance of the receiver under signal and interference condi-

tions described above, is given in terms of PD and PF as

1+0.666 SNR JSR

= P - 1+S.VR+0.666 S.VR JSR (4.53)

where SNR and JSR are defined in Equation 4.26 and Equation 4.27, respectively.

These results will be analyzed in more detail and presented graphi&ally as ROS's

in Chapter 5.

B. PERFORMANCE OF RECEIVER II.

The problem addressed here, has been mathematically described by the Equations

4.1 to Equation 4.3.

The optimum threshold test has been given in Chapter 2 by Equations 2.53 and 2.54

and the performance of the receiver that implements this test is given by Equations 2.48

and 2.56. The so-called SPLOT problem introduced in Chapter 2 yields a simpler sol-

ution for the optimum receiver and its performance as given by Equations 2.55 and 2.56.

Specific performance evaluations can be carried out for the SPLOT problem under the

assumption that the signal envelope takes the mathematical form given by Equation

3.22.

Now, based on the type of additive Gaussian noise PSD considered to be present
under the two hypotheses, two cases are investigated below.
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1. Problem 1.

The performance of the receiver shown in Figure 6 on page 20, and Figure 7

on page 21, which has been designed for the signal and noise model of Equation 4.1, can

be evaluated when the additive noise is different under the two hypothesis, namely

ACGN under the H hypothesis and AWGN under the Ho hypothesis. It is obvious

that these receivers are no longer optimum for the now assumed signal and noise model.

In this case, the complex envelopes of the received wavefurm under the two

hypotheses can be mathematically described as

H, /Er)- t bf(t)+'(t) O t<TH0  + 7(W-(t) (4.54)

where b is a complex Gaussian random variable, which models the target and whose

moments are given by Equation 2.23 and Equation 2.24, f(t) is the complex envelope

of the transmitted waveform, ?-(t) is a zero mean Gaussian random process defined in

Equation 4.2. and i(t) is a zero mean white Gaussian process. independent of the col-

ored noise 7(t)

In order to evaluate the performance of the receiver shown in Figure 6 on page

20, and Figure 7 on page 21. the probability density function of the signal at the receiver

output conditioned on both hypotheses must be determined.

The correlator output is a complex Gaussian random variable, which defined

by Equations 4.4 through Equation 4.6.

Obviously. since both njt) and w(t) are assumed to be zero mean processes.

and recalling that b is a zero mean Gaussian r.v.,

E{ 1/Ho) = E{r1 /I} = 0 (4.55)

and using the definitions introduced by Equations 4.8 and 4.9 the appropriate variances

can be evaluated as
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2a~ 2 E{ I 1
21H}I = f{{{ r) v *(u)j-z *'(u) dt du}

(4.56)IT
and since

E({{ 12 (t ) 7 (u)j(t) j (u) dt du}

T{ , u) (i)j *(u) dtdu

JI W[ K--,t] ~ud (4.57)

j- *(t) di

then
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f f T
27 = 1E{l /l}E ,=E b f(t)g (1)dt + nl(t)

itd + I, dI4.8

0

= L. , 712 o f(,)g *(t) dt 2+ fo (1)j'(,) dt (4.58)

i (t)0(g "(t)dt + ! ft)g *(t) dt

0 *f0

Since , is a complex Gaussian r.v., the p.d.f.'s of 1 conditioned on the two

hypotheses can be written as

r exp/ I 2 (59)

*<ll I(ll4)) exp - , (4.60)
2:z,-,70  2 to

The procdure carried out in Equations 4.141 to Equation 4.19 can be utilized

here to obtain alternative expressions to the above p.d.f.'s. This yields

2c; 2 2
It 2o 3j

171to(01/ll)= -- exp -At u(m) (4.62)
2an0  2a Io

where the r.v. ni is defined by Equation 4.17. Similar to the steps carried out t..;
Equations 4.20 to 4.22. we obtain
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PF =exp( -y 2
2y7,

and

PD exp(

so that

2 2
PD = (PF) 2 a ° 2 a; l  (4.65)

Using Equation 4.56 and Equation 4.58. the exponent of Equation 4.65 can be

written as

2c 2- "V0 f e dt

F 1( j(4.66)

E, f (i) "(i) di + T(t 7 *(t di

00

From Equation 4.65 and Equation 4.66, we observe that as F increases PD

decreases for fixed PF so that the analysis of ROC's can be equivalently replaced by

analyzing the behavior of F.

Therefore the performance in terms of the parameter F of the receiver shown in

Figure 6 on page 20 and Figure 7 on page 21. for the SPLOT problem and under the

above stated hypotheses will be evaluated for four kinds of colored noise interference

PSDs.

a. Bandlimited Constant Amplitude PSD.

In this case the jamuning noise PSD is given in Equation 4.23. Then

G joj) from Equation 2.55, becomes
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F sin(co T)

T~i ex(-jCO+)

+- J (4.67)
T

sin(c-) exp(-J T
(V T-T ) jwT~

,VO Co < -W , w>w

The Inverse Fourier Transform of Go(w) is obtained from

-sin(w -in)

r T

+ 2'- J ) T exp[j(t - -i-)] dw o+ -

esin(w T

2 expUwj(t - T ]dwo

T

ITNO (COT)

Since

T

T- s(w2 ) expuco(t---T)] dw = 1 0 < t < T (4.69)

j(t) becomes
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9(t) -- 1 Eu(t) - u(t - 7)] -
N0.]/ T

NTpn c  W sin(co T (4.70)

27z sin(W +) expU wo(t - 2 )]dw 4.0
0it X + P f (CO )

so that

ST
~STf(t)g (t)dr dt -

9 p- T~

17" exp[ -jco(t -2 T (.1

V)- T [--)]dwjdt (4.71)

7w • 2 T

Tf PnCsin (co

N + P2-) T) do3,o ~ ~ 7 -V , 0"- . C + r -. (,O 2'

Defining now the normalized frequency w as

2-r (4.72)

where o is a scalar. and changing variables, the integral in Equation 4.71 becomes

Wsn2 T
(co2 2d- sin "r dx= -  n(O.) (4.73)sin ~ 4 J 7[inx]2 ~j T 7' T

f-W CO)2

where

n@)J [ sin x ]2dx (4.74)
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therefore

f (t)j "(r) dt =:-7 - o" o+p
oo 7( 0(4.75)

1 F SNRJSR 1

NO 2a+SNRJSR

Since the problem being analyzed assumes a long observation time, use of

the approximation

oTg(t) I dt- fog2 d (4.76)

is made so that by Parseval's Theorem, the integral in the numerator of Equation 4.66

can be evaluated

T si2 T
dt[Ts 1(w2y T ) dO+

T [i 0 + -L P"] 2 - (CO-)

2 2 T
T sin (Co-i-) F sin (co-)

+ r Uz__2 do+ 2 dco (4.77)

_ .L [-n()+n ) ( 2+ nRS )2]

Ao' 2a + S.VR JSR

Therefore

(1- n(c)) + n(a) 2o + S2R JSR

r R 2 + -SR JSR (4.78)
SNR (I- n(o!) .7.S )2+ na SXJR

2o. + SXR JSR + 2a + SX'R JSR

As shown in Appendix B, the worst receiver performance occurs for

= 1, so that evaluating Equation 4.78 with a. = 1 results in
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0.1+0.9 2 + SNR JRR (4.79)

SNR 1-0.9 2+SNRJSR + (I - 0.9 2+SNRJSR

b. Sinc Squared Shaped PSD.

In this case the jamming noise PSD is given in Equation 4.28. As a result

of this

T

sin(co -) T

T exp( -jw- )

sinw 2 (CoT (4.80)

2T

s (w-T ) T so

exp" o(t -
T )2

(inCO T )g~) L i2TL jdw 0 < t < T (4.81)

T2(woT)

Therefore
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T

sin(co ) T
T exp~jj(t - - )]

J\T LI 2T dwdTC f do dt
27t fo -IT sin 2 (C "L" ) 1(4.82)

00 N 0  + TPncT 22

2

ScoT)

2-'- [ sin2( T) 1
2-r____ 2

T sin (Ci

NO + TPnc  T
7 2

A change of variables results in

IT 1

J (t)dt- D2N (.4.S3)

%"0

where

sin 2( 7rx)

D2(r) 2 sn2 (zx (4.84)

I + SNR JSR six)(

and SNR and JSR are given in Equation 4.26 and Equation 4.27, respectively.
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Using Parseval's Theorem and the approximation of Equation 4.76 yields

Tsin I'rx ]2
_(t)~~ I'd I dx
--o 20 A- I SNRJSRsin 7rX]

x2 (4.85)

NO

where

f 1I sin(,rx) 1
2 -- X 2 dx (4.86)

I' -- sin (rX)
1 + SNR JSR inx)

so that

r = 2 (4.87)
1 SNR D2 + D2

2D D2 2 2~

c. Butterworth Shaped PSD.

In this case the jamming noise PSD is given in Equation 4.31. As a result

of this

I sin/T T) exp( " T

(o T 2

(C(o) = LIT (w -) . )(4.88)
I"o + a2 + ]02

and via inverse Fourier Transformation

51



sin(co T T)  T
T expUco(t - T)]

= ] NO + - 2 Pn Cdco 0 <1 < T (4.89)

2 2
cc +0

Therefore

jf~i)si(r~r0 T
2T

S (CO ) 
T

-2 ) [ -jcot) dt]dw2 -CI .-No + o2 + o 2

sin irx)2 \(4.90)

_ (dx
O _1 +SXRJSR 1 2 ),

T 2 4 , - I2

0. ---'1- x _

sin2 (,x) T-
1 (,rx)2

o 7X) 2 dx

I + +-f SNR JSR2

1.D 3

where

27 
(4.91)

and ,B is a scalar, SNR and JSR are defined in Equation 4.26 and Equation 4.27. re-
spectively and
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sin2 (rx)

1 f (Ix) 2  /3 dx (4.92)
-_ 1 + SXR JSR fl 2 + 2

Using Parseval's Theorem and the approximation of Equation 4.76 yields

sin2 (rx)

fdt f (I)2 dx0 N02o f (0 1+ -LS) S
(I+±_S.R JSR /322 (4.93)

1
- N3

where

sin 2(,-rx)

(3x)2  dx (4.94)

[I+SRSR 12

Therefore

__ __ __ _N 3
Er. 1 SNR D2 + D3  (4.95)

-- D2 +- D3
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d. Triangular Shaped PSD.

In this case the jamming noise PSD is given in Equation 4.34. Then

T

sin(co-y) T

ST exp( -jco T)
(co--)

G=.(co) = + w I a IV o _ w

O 0 + " 1 ) (4.96)

T

_ sin(co-y-) T
T exp( -jT- )

(T)-coT
O -W ( IV

and via inverse Fourier Transformation, we obtain

T
sin(co T-) T

T exp[jco(t - T ) ]

-- dc +2g 7 f - N"O + P OO

x'"T '- ° 0 sin(coT)TJT
+2"iN _ s(w) exp[io(t - )] dw + (4.97)

Tx" osin(co - -W~ ) c
+ 2i.xb 4, exp[to(t- (O)] dw

From Equation 4.69. j(t) becomes
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g (t TO [u- u(t - T)] +

( sin(w T2 ) x ')t
o 1 -) 2x~~ ))d

21 - o X+icvI\] (4.98)

-- 2 exp[ wr-]dco
rv (oT 2 j

Therefore

T o T T

\ ~ ~ x (c(t- / wd
+ (TcoW Tw .L W 2 J (4.99)+W [.\- + jd it

0 COO W

N ITf T ~ o I sin(W T) eXP[ -jW. co +)]]dc d,

2-,
0 iIJ

w~here
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SNR JSR(- 1) sin 2 (rx)
D3= f T-c 7x ) dx

2rzE + SNR JSR(1---) ((Ix)

t is a scalar related to coo according to

COO  T1z (4.101)

and SNR and JSR have been defined by Equations 4.26 and 4.27 respectively.

Again, from the approximation of Equation 4.76 and using Parseval's The-

orem to evaluate the appropriate integral, we obtain

sin2 (o) T

T ) If 
T T  )2 2

1 ~ ~ ~ ~ ~ w JjI 2d _I)d

2r.Mo - T dw+ (4.102)

T
'V sin (codco)

--- - -N ( Z) T )2d

w here

sinrx
0 f dx (4.103)

_3 fi+ i SNRSR "i-- ]

and n(,) is defined in Equation 4.74.
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Therefore

1,T [1 - n(t) + N 3]
F= V

NO 0O (4.104)

[1 - n(t) + A-3]

SXVR[l tD 3 ] 2 + [1 ++D,]

As shown in Appendix B, the worst receiver performance occurs for f =I

and therefore Equation 4.104 becomes

(0.1 + Nj)

SNR[I + 0.636D3]2 + [1 + 0.636D3]

2. Problem 2.

The problem which is mathematically described in Equation 4.1 and the corre-

sponding performance of the receiver shown in Figure 6 on page 20 and Figure 7 on

page 21, specified by Equation 2.48 and Equation 2.56, is now evaluated for four differ-

ent kinds of colored noise PSD.

a. Bandlimited Constant Amplitude PSD.

Usine the results in Equation 4.75, A becomes

-E, Pn, -E,

N~O ( L A, + Pd

Er n() r  SNRJSR (4.106)
NO A0  N 2r T + SYR JSR

77 T

JSR (S.NR)2

= S.YR - n() 2o. + JSR SXR

where SNR and JSR are defined in Equation 4.26 and Equation 4.27, respectively.
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Appendix B is devoted to investigating how A behaves as a function of 0..

It is demonstrated there that when a = 1 A is minimized, which results in the worst re-

ceiver performance. Therefore evaluating A when a = 1 results in

JSR (SNR) 2

A = SNR - 0.92+JSRSNR (4.107)

Furthermore, it can be proved that PD is a non-increasing function of

JSR. That is

D= (PF(- ) (4.108)

and taking the first derivative we have

dP _ dA(JSR) I + A

d JSR) d(JSR) (PF)I-+A ln(PF) dA

-0.9 (SXR)2 (2 + JSRSXR) - JSR(S.NR) 3  1(4.109)(2 + JSR S.XR)" 
(1 + A)

- ln(Pr) { (2 +SS.VR)" (PF)I+A A) 2

+ JSR( + A)

For 0 < PF - 1 , ln(PF) < 0 , and (PF) +.S > 0, this demonstrates

that

dPD <_PD < 0 (4.110)
d(JSR) -

so that indeed PD is a non-increasing function of JSR, which means that as JSR

grows, PD can at best remain constant, but is most likely to decrease. This clearly

shows that increasing the colored noise power transmitted by the noise makers, the

performance of the receiver is degraded.
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b. Sinc Squared Shaped PSD.

Using the result in Equation 4.83, A can be evaluated as

sin2 (x)

A = SNR (7rx)2 si 2 l . 1)

FI I + SXR JSR si2(mx)
(x 2

where SNR and JSR have been defined in Equation 4.26 and Equation 4.27, respectively.

The mathematical form of A and its dependence on JSR make it simple to prove that

PD is a non-increasing function of JSR.

Using Equation 4.108 and 4.111, and taking the first derivative we have

d( I
dPD dA(JSR) d 1 --I-+"A

d(JSR) d(JSR) (n(PF) dA

4sin (7x)r -SXR (m)1
S .VR F. .\ Id(PrCi+i ln(P-) -

L (l±]s s -AnLxj +2 (I + A)2 (4.112)
- I + JSR S.VR 7X-2)

(mx)"/
4

sIn (,-,x)

= ln(PF) (SAXR) )mx ____ (P)IK (1 +.ISR SNR sin2,x) 2x( + A

It is obvious however that

4sin (Mx)

(m)sn( 2 > 0 (4.113)

I + ]SR SXR (mx) 2  2

Since (Ps) , > 0 and ln(P,) <_ 0 for 0 < Pr < 1 , it can be seen that
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d(JR < 0 (4.114)d(,ISR)

and therefore PD is a non-increasing function of JSR. This clearly shows that in-

creasing the colored noise power transmitted by the noise makers, the performance of

the receiver is degraded.

c. Butterworth Shaped PSD.

Using Equation 4.90, A can be evaluated as

sin 2 ( x)

A = S NR (rx)2 dx (4.115)
S -- SNR JSRf +

In Appendix B the behavior of A as a function of fl is investigated. It is

shown therein that for #3 = 1 , A is minimized and therefore the receiver performance

becomes worst, so that evaluation of PD as a function of PF is carried out for = 1

Furthermore, it is now proved that PD is a non-increasing function of JSR. Taking

the first derivative we have.

d( I
dPD  dA(JSR) d 1-+-A

d(JSR) dc.1SR) (PF)' -A ln(PF)

I3

--. S.VR sin'(,mx) I? A__00 r (rX)2 f2 +X 2

= SNR L dx (PF) i +A ln(PF) (4.116)

I + -L JSR flx 2 (1 +A)'

1 sin (rx)
( )2 7 (,-x) f -+ x dx(PF)1+A

n(PF){ RJ + f) 2+ 2  
(I + A )2

I +1-L JSR S.R 
2

Since
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sin2 (Itx) fi

()2 2 + x2 dr > 0 (4.117)

-00 1 +--LJSR SYR 2 +x2

and (PF)+A > 0 while ln(PF) < 0 for 0 _< PF <- 1, results in

dPDd D < 0 (4.118)
d(JSR)

Therefore PD is a non-increasing function of JSR. This clearly shows that increasing

the colored noise power transmitted by the noise makers, the performance of the receiver

is degraded.

d. Triangular Shaped PSD.

Using the result in Equation 4.99, A can be evaluated as

S.YR JSR ( ) sin- 1)rx)
A = SXR + 2SNR 2 F dx (4.119)J L 2 +±SXR JSR (1 -± x ~ r

The behavior of -A as a function of E is investigated in Appendix B. As be-

fore. performance will be evaluated for E = 1 , which is shown to minimize A and there-

fore yields the worst receiver performance. Furthermore, the next few steps prove that

PD is a non-increasing function of JSR, by evaluating
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d()
dPu  dA(JSR) d 1+ A

d(JSR) - d(JSR) (PF) I+A In(PF)
•2

. ... x ,sin 2(tx)
-=2(SN\R)

2 FT ~l  e-- I (itx)--2  l~ dx(Pr)) (n.P20)

Jo - [2er- SNR]SR(1- ,±)2 ]dx(PF )'1+, .(P20

x sin 2(x)

7([lR +-A)

Since

FrI 2[(-'±) ( ) ] 1

J0  [ x dRSxl±)2 > 0 (..121)

whereas (P) +--) > 0 and ln(PF) < 0 for 0 < F <1 results in

dP < 0 (4.122)
d(JSR) -

so that PD is a non-increasing function of JSR . This clearly shows that increasing the
colored noise power transmitted by the noise makers the performance of the receiver is

degraded.
Tlhese results will be analyzed in more detail and presented graphically as

ROCs in Chapter 5.
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V. RESULTS

A. TARGET MODEL A.

1. Problem 1.

Given that PD as a function of PF is given by Equation 3.36, the ROC's for

the suboptimum receiver can be obtained, using numerical methods.

In Figure S on page 64, Figure 9 on page 65, Figure 10 on page 66, and

Figure II on page 67, the ROC's are presented for four different values of SNR, the

Signal-to-Noise Ratio, namely OdB. 5dB, 10 dB and 15 dB, respectively. In each figure,

the ROC's are plotted for three different values of JSR, the Jamming-to-Signal Ratio.

namely 0. 0dB and 10 dB. The first value of JSR, corresponds to the absence of noise

interference for comparison purposes.

Observe that for low to moderate values of SNR, any amount of jamming noise

power actually improves the performance of the receiver. As the Signal-to-Noise Ratio

increases (Figure 10 on page 66). some amount of performance degradation is achieved.

but again as JSR is increased, which corresponds to more target generated noise power

at the input of the receiver, the performance is improved. The limited amount of per-

formance degradation achieved is more evident for higher values of SNR (as demon-

strated by Figure 10 on page 66). for which SNR takes a value of 15 dB. Therefore,

there are cases where an optimum value of JSR exists that achieves the maximum pos-

sible receiver performance degradation, for given values of SNR and PF. Hlowever. even

in the case where is some performance degradation is achieved, the receiver still operates
with a relatively high value of PD with corresponding values of PF in the order of

10- 3 . which is still high for a radar receiver.

Since the noise interference power that is needed in order to degrade the per-

formance of the receiver is a function of both PF and SNR, and the target attempting

to generate this noise interference has no prior knowledge of those values, it is apparent

that this form of receiver performance degradation is not very effective or practical.
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B. TARGET MODEL B.

1. Receiver I.

a. Problem 1.

Given that PD as a function of PF is given by Equation 4.30, the ROC's

for the suboptimum receiver can be evaluated using numerical methods.

In Figure 12 on page 69, Figure 13 on page 70, Figure 14 on page 71, and

Figure 15 on page 72, the ROC's are presented for four different values of SNR, the

Signal-to-Noise Ratio, namely 0 dB, 5 dB. 10 dB and 15 dB, respectively. In each figure,

the performance is shown for three different values of JSR, the Jamming-to-Signal Ra-

tio, namely 0. 0 dB and 10 dB. The first value of JSR, corresponds to the absence of

noise interference for comparison purposes.

Observe from the plots that the addition of colored Gaussian noise inter-

ference always improves the performance of the receiver. Since the receiver is designed

to be optimum in the presence of just white noise interference, this performance im-

provement occurs because the colored noise becomes associated with the target reflected

signal rather than the noise, and therefore the colored noise is seen by the receiver as a

reinforcement of the reflected signal rather than as additive noise interference.
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b. Problem 2.

Given that PI as a function of PF is given by Equation 4.53, the ROC's

for the suboptimum receiver can be evaluated, using numerical methods.

In Figure 16 on page 74, Figure 17 on page 75, Figure 18 on page 76. and
Figure 19 on page 77, the ROC's are presented for four different values of SNR, the

Signal-to-Noise Ratio, namely 0 dB, 5 dB, 10 dB and 15 dB, respectively. In each figure.

the performance is shown for three different values of JSR. the Jamrning-to-Signal Ra-

tio, namely 0, 0 dB and 10 dB. The first value of JSR. corresponds to the absence of

noise interference for comparison purposes.

Observe that, for every value of SNR considered, there is a significant
amount of receiver performance degradation corresponding to the amount of noise in-

terference present (as determined by the JSR value), and is quite large for high values

of SNR (as shown in Figure 19 on page 77).

This case considered, demonstrates significant receiver performance degra-

dation which is achieved under the assumption that th.e ability to generate and transmit

colored noise interference continuously (under both hypotheses), when the target is

within the radar detection range, is indeed valid.
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2. Receiver II.

a. Probkn 1.

Given that PD as a function of PF is given by Equation 4.87, the ROC's

for the suboptimum receiver can be evaluated, using numerical methods.

In Figure 20 on page 79, Figure 21 on page 80, Figure 22 on page 81. and

Figure 23 on page 82, the ROC's are presented for four different values of SNR, the

Signal-to-Noise Ratio, namely 0 dB, 5 dB, 10 dB and 15 dB, respectively. In each figure,

the performance is shown for three different values of JSR, the Jamming-to-Signal Ra-

tio, namely 0, 0 dB and 10 dB. The first value of JSR, corresponds to the absence of

noise interference for comparison purposes.

In Figure 20 on page 79, which corresponds to an SNR value of 0 dB, there

is a clear performance improvement for any amount of noise interference power present.

A somewhat similar occurence is visible in Figure 21 on page 80. which has been plotted

with an SNR value of 5 dB. For JSR= 10 dB there is a slight performance degradation,

however for JSR= 0 dB. there is an actual receiver performance improvement. This

means that there is a unique value of JSR. which for a specific value of SNR, yields the

largest receiver performance improvement. Clearly, the noise generating target must not

only avoid producing such a JSR value at the receiver, but it must attempt to cause the

largest performance degradation.

In Figure 22 on page 81, and Figure 23 on page 82. which correspond to

SNR values of 10 and 15 dB, respectively, there is a significant amount of receiver per-

formance degradation in relation to the amount of noise interference power present.

This performance degradation increases with increasing SNR values as the figures show.
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b. Problem 2.

Given that PD as a function of PF is given by Equation 4.108 and

Equation 4.111, the ROC's for the suboptimum receiver can be evaluated, using nu-

merical methods.

In Figure 24 on page 84, Figure 25 on page 85, Figure 26 on page 86, and
Figure 27 on page 87, the ROC's are presented for four different values of SNR, the

Signal-to-Noise Ratio, namely 0 dB, 5 dB, 10 dB and 15 dB, respectively. In each figure,

the performance is shown for three different values of JSR, the Jamming-to-Signal Ra-

tio, namely 0, 0 dB and 10 dB. The first value of JSR, corresponds to the absence of

noise interference for comparison purposes.

Observe that, for e~er" value of SNR considered there is a significant

amount of receiver performance degradation corresponding to the amount of noise in-

terference present (as determined by the JSR value).

This case considered, demonstrates significant receiver performance degra-
dation which is achieved under the assumption that the ability to generate and transmit

colored noise interference continuously (under both hypotheses), when the target is

within the radar detection range, is indeed valid.

83



0

0

0-4

C)

aR-

o

0ISP=O
00I~SIR=()DI

,L
Q

o

Is , " - 3 2 1__ __ _ __ _

0

04

g_1
.1

InI
N-

P

0°

° 0

c; .. . . . ... .. ... "- -- -

PROB. OF FALSE ALAM

Figure 24. Oilpimum Colored Receiver, HI Colored 11o Colored SNR = 0 dB.



(if

0

I0I
,,,=4

t

If

0

ix.4

1. I __ ___

0--4

0

IC):1 

. ,I

o .

0 ....

1 0 -9 10 0 10 -7 10 -6 1 ') 10( - 10 -3 10 10 i(,1PV013. O1F FALSE ALA1

Figure 25. Optimum Colored Receier, 11, Colored 110 Colored SNR 5 dB.

a 6 I,;G E D 

"5



0
C-

-

C'

cvl

a"--- t

c 0 LEGEND

U JSNZ=))

HO .3•

0 I

to

: i

In I

0.. ... .... ....

0 w -7 G -5 1-4 - -2 -L 10 10 10 PROD3. OF FALSE ALAJPM

Figure 26. Optimum Colored Receiver, l1, Colored HO Colored SNR= 10 dB.

86



10

0

E-4

o

o 

c-J
L EGI.Th

1W, I I (f 1 0 1W!

PROD. OF FLSE LAR

: ,

iro I

- 7

0 *

0 .:..

0' .. .. .

C........... *

I I I h ll I I1111 I 11111 I I1111 I 111

-[-7 - -5-o 2 -

PRD.OFFASEALIJ

Fiue2.Otmm ooe eevr,1DClr-H ClrdSRI B

oS



VI. CONCLUSIONS

The problem of masking a radar signal return by selecting the power spectral density

(PSD) of an externally generated power constrained noise intcrference has been consid-

ered under two sets of assumptions. In the first one, the radar receiver is assumed to

have no prior knowledge of the actual noise present, and thus it has been designed to

be optimum when additive white Gaussian noise (AWGN) is the only source of inter-

terence. In the second one the radar receiver is assumed to have prior knowledge of the

noise present, so that it has been designed to be optimum in the prescnce of the actual

noise, which will be assumed to be additive colored Gaussian noise (ACGN) that con-

tains an AWGN component. In both thesc cases, the external noise interference is as-

sumed to be generated and transmitted by either the target itself or by noise making

devices present in the area being penetrated by the target.

Using first a simple target model, that is assumed to only introduce a random phase

to the transmitted sinusoid upon reflection whenever the target generates and transmits

the noise interference while illuminated by a radar, a modest amount of receiver per-

formance degradation was shown to be achievable. Such perfbrmance degradation was

demonstrated to depend .on the specific values of JSR and P,.. and to yield only a

moderate decrease in the receiver's probability detection, I'D. -Iaking into account the

fact that any performance degradation effiects depend on parameters over which the

target has no control, one must conclude that target generated interference is not an ef-

fective method for masking the radar signal return.

Using the second target model which takes into account the reflectivity of the target

so that the radar signal return is modeled as a Gaussian random process. the perform-

ance degradation results depend on the type of' receiver that is being analyzed.

If the radar receiver used is designed to be optimum in the presence of only AWGN

interference, then any noise interference transmitted by the target (when it realizes that

it has been illuminated by a radar) is added to the reflected signal and consequently helps

the receiver to identify the target's presence.

On the other hand, if noise making devices used to generate and transmit ACGN,

the results clearly show a receiver performance degradation that is proportional to the

amount of noise interference present.
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If the radar receiver used is designed to be optimum in the presence of ACGN that

contains an AWGN component. (this would imply that the receiver has prior knowledge

of the kind of noise being generated either by the target or the noise making devices).

the use of noise making devices to generate and transmit noise interference causes a

significant receiver performance degradation. The same receiver undergoes limited per-

formance degradation when the noise interference is transmitted by the target itself. At

low values of Signal-to-Noise Ratio, the receiver performance is actually improved.

Since the receiver performance degradation is a function of SNR, a parameter over

which the target has no control, it appears that again, target generated interference is

not an effective way of masking the radar signal return.

From the caes investigated, it is clear that the choice of PSD shape associated with

the colored noise interference generated, strongly depends on the type of signal trans-

mitted by the radar. Furthermore. such ACGN interference is best generated by friendly

noise making devices present in the area that the target penetrates. This appears to be

the only effective method of significantly degrading the radar receiver performance. thus

allowing a target to penetrate an area with low probability for being detected.
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APPENDIX A. EVALUATION OF F ,Oi FOUR PTSI CASES.

Equation 3.13, defines o2I, which is repeated here for convenience

2 21 2 (,1.I)
PI 21r S'(w) I -, ) I 1

where Sn,(¢A) is the IPSD of the colored noise nt() . and I F~c(,) 12 is defined in Equation

3.24.
The quantity Co2 can be evaluated undcr a total power constraint on nEt) for four

different PSD shapes of S,,(wo).

A. BANDLIMITED CONSTANT AMPLITUDE PSD.
The PSD of the bandlimited white noise is mathematically described as

2,7r

SnC(CO) = c 1 wl + < I (1.2)

0 otherwise

Assuming that the power of nti) is P1 , then c must satisfy

-WC+ 2% 2
I' + c dw + C F r - (1.3)

W- 0) " " - -i--J-
CT

therefore

c- -i- (,IA)
.4 fl1c

and

T +27P, I-' , -i-
S, t(w) -- (1!5)

C 0 otherwise
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As a result of this, we obtain

2 1£
e - 2 1 Snco ) I Fc(co) 12d °

T2 P7c + T si 2 T(C° -  
2

T 2+ T (A.6)

+ -2 sin2[((0 + Co)) -" d (- 6
16T . .. "O Tsn "C Ce do + f -2 "u J-' i

U [( C)9]2 2- [(CO + Coe)T 2
WC7T 2-COC- T2

Changing variables we obtain

2 TP snsn 2it
-- dx + - dv

TP~ (A,7)

= 1.42 -i(. 

7

2'z

= 0.227 TPnc

B. SINC SQUARED SHAPED PSD.

The PSD in this case can be mathematically described as

sin 2[(w + ~) T2 - T

Sill (C-i co ) sin C
Sc (w) = c ,T2 +c T]2 -0 < O <  (48)

L[( + ) T[(- r

Under a similar power constraint. c can be evaluated as

rsin 2 [(CO + T0c -Lj in[(o (o,~)T
2 T d'o L(+ (]A.9)" -- (CO + Coe 2l [W- Coe)

thelrcfore

c 2 
(A.10)
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Assumingy that co T is sufficiently large so that

sin [(w - co T T)

[(W] - i[( + w) --

and since

TPn sin[(o + co, T i[c - co,)2

ncW = 2 L (C T o- +- C T 2 - -O 00o (A.12)

Nve obtain

-C ' f Sn,(Q) I F,(C) ~~

TP2sn ( + To sn 4[()-wj#O (A1.13)
____- dw +dw

Smr T 4 2

and changingy variables

2 TPn, sin4 dx

. 7 0CO (A. 141)

=0.333 TPn

C. BUTTERNVORTH SHAPED PSD.
The Butterworth shaped PSD can be mathenmatically described as

Sn/CO)= - 2 +()C) 2 + C, +&-~ 2  -~ 0 c 0o0 (A.15)

and under a similar power constraint, c can be evaluated as
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c +[c d++ =Pn (A.16)27r a 2+ (CO + Coo)d 2 . + (co _ Cod)2

so that

c = OfPnc (A.17)

thus

a Pnc a Pnc
(c +( - 00 o <c (A.18)

and as a result of this

=I~ 2-, ISIw) F() Idw

T E[[ - TTPIC sin (co - Coe) -F" I

o . d (A. 19)-+ ( w - we) - Co )

TI, sin [(c + o)

+2 +______ 2 d
+ 4-- z 2 +(co 4-c) [(Wo + co')--7-2do

2

Changing variables yields

2 TPn x 2

n c - - o ( r  2  d x

2 + x (A .20)

0.304 TPnc
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D. TRIANGULAR SHAPED PSD.

In this case the PSD is mathematically described as

P n , 
w + C O ,( 0

s (o) Jw(A.21)

2wo 1  ICOcI < w0

so that

2 _ -1 2
an C ) Sn (c) I Fc(wo) I d

TP OC0s 
+ TS n,0  I Co + (1oc  .

- O [( + T w2 + )4 .22)

f ,, - foo c+ ) "2

+ ,rw1)1 /0" [(CO - oe) - dI

Assuming 11, -2- and changing variables
T

2 7 f Ix4l) dxnt- 4r 2 -- x 2'"q-

- ,- (A.23)

- 0.051 TPnC
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APPENDIX B. BEHAVIOR OF A AS A FUNCTION OF NOISE

BANDWIDTHS.

In this Appendix the behavior of A as a function of the interference noise bandwidth

for various types of noise PSD shapes is investigated.

A. BANDLIMITED CONSTANT AMPLITUDE PSD.
It is shown in Chapter 4, Equation 4.106 that

A = S.R - JSR (S.VR) 2  sin(i.r) dx (B.1)
2. + JSR S.VR (7X)2

In Figure 2S on page 96 and Figure 29 on page 97. A has been plotted as a function
of o for JSR=0 dB and JSR = 10 dB respectively. SNR values ofO dB, 10 dB and 15
dB have been chosen in each plot.

From the pictures it is clear that the smaller A , which yields the worst receiver

performance, corresponds to Y = I
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B. BUTTERWORTH SHAPED PSD.

It is shown in Chapter 4, Equation 4.115, that

sin2 (x)

A = SNR (x) 2 dx (B.2)f -f SN:YR J S R /2
0 12

In Figure 30 on page 99 and Figure 31 on page 100, A has been plotted as a func-

tion of/P for JSR=0 dB and JSR= 10 dB respectively. SNR values of 0 dB. 10 dB and

15 dB have been chosen in each plot.

From the pictures it is clear that the smaller A , which yields the worst receiver

performance. corresponds to #3 = I .

The overshooting in Figure 31 on page 100 resulting in slightly negative values for

A is due to limitations in the computer plotting package used, rather than due to erro-

neous numerical results.
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C. TRIANGULAR SHAPED PSD.

It is shown in Chapter 4, Equation 4.99, that

t[ SVR JSR (-L- - 1) sin 2 (rx)

A = SNR + 2SNR ERx R dx (B.3)
JL2rc + SVR JSR (I - -F) (7rx) 2

In Figure 32 on page 102 and Figure 33 on page 103, A has been plotted as a

function of for JSR=0 dB and JSR = 10 dB respectively. SNR values of 0 dB, 10 dB

and 15 dB have been chosen in each plot.

From the pictures it is clear that the smaller A , which yields the worst receiver

performance. corresponds to e = 1.
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